Chapter 15 Problems Plus Hints
 Math 2E Spring 2016

15.Review.58,59

For 58: The statement in 15.2 .11 is that if f is bounded from below by m and above by M, in other words $m \leq f(x, y) \leq M$ at every point, then

$$
m \cdot \operatorname{Area}(D) \leq \iint_{D} f(x, y) d A \leq M \cdot \operatorname{Area}(D) \stackrel{\text { so we infer }}{\Longleftrightarrow} m \leq \frac{1}{\operatorname{Area}(D)} \iint_{D} f(x, y) d A \leq M .
$$

Theroem 14.7.8 states that on a closed domain D, (in other words, just take any domain and include its boundary), a continuous function will attain its minimum and maximum values, and every value in between because it is continuous. Here, m is the minimum and M is the maximum of f. And, f is continuous - so it is hopefully okay from here to finish the proof of 58 .

For 59: We're to use 58, the mean value theorem. Notice $r \rightarrow 0$, the disk is shrinking. From the mean value theorem, this point $\left(x_{0}, y_{0}\right)$ is always inside the domain, so it is always inside the disk D_{r}. As $r \rightarrow 0$, we are circling the point (a, b) so where must $\left(x_{0}, y_{0}\right)$ go as $r \rightarrow 0$ too?

Problem 5 (and similarly 7)

The domain of integration is $[0,1] \times[0,1]$ so on this region, $x y<1$ all the time (except at 1 point when $x=y=1$, but this is only one point so it "doesn't affect the integral"). This is why we can use a geometric series, to write

$$
\begin{aligned}
\frac{1}{1-x y} & =\sum_{n=0}^{\infty}(x y)^{n}, \text { where now, show that } \\
\int_{x=0}^{1} \int_{y=0}^{1} \sum_{n=0}^{\infty}(x y)^{n} d y d x & =\sum_{n=0}^{\infty} \frac{1}{n^{2}} \text { by evaluating the integral on the left side. }
\end{aligned}
$$

This is equivalent to summing up the integral of all the individual terms, and note $(x y)^{n}=x^{n} y^{n}$,

$$
\int_{x=0}^{1} \int_{y=0}^{1} \sum_{n=0}^{\infty}(x y)^{n} d y d x=\sum_{n=0}^{\infty}\left(\int_{x=0}^{1} \int_{y=0}^{1} x^{n} y^{n} d y d x\right), \text { you'll want to compute this right side. }
$$

Problem 8

Using the books hint, they want us to write this as $\int_{x=0}^{\infty} \frac{1}{x} \int_{y=x}^{y=\pi x} \frac{d}{d y}[\arctan (y)] d y d x$. Then, my hint, change the order of integration to $d x d y$. (Your new bounds should be $\int_{y=0}^{\infty} \int_{x=y / \pi}^{x=y}$) and evaluate.

Problem 9

I only mentioned this one because I ran into this a ton in physics (and engineering) courses. I think it would be an awful test question because it's irrelevant to the chapter. However, I just want you to see it because you may run into, or need, these relations a lot!

The way to show these is to use the chain rule from Chapter 14.5 (In other words, that's why it wouldn't be a good 2 E test question).

